Close

We believe gathering measurements from the surface of Greenland ice is fundamental to advancing our understanding of the melting Arctic.

We inform the global public what's happening in this remote but important place.

Canadian fires and the Dark Snow effort

assets-climatecentral-org-images-uploads-news-7_16_14_Brian_NWTFiresAerial-640x480

An aerial view of the Birch Creek Fire complex, which seared 250,000 acres as of Wednesday. Credit: NWTFire/Facebook/ClimateCentral.org

A large number of uncontrolled fires are burning across the Canadian NWT. The prevailing flow brings some of that smoke to darken Greenland ice.

2014_184

Example of one day last week of fires detected from NASA satellite thermal imagery. Analysis by Jason Box as part of the Dark Snow project

via Brian Kahn of Climate Central

“The amount of acres burned in the Northwest Territories is six times greater than the 25-year average to-date according to data from the Canadian Interagency Forest Fire Center.

Boreal forests like those in the Northwest Territories are burning at rates “unprecedented” in the past 10,000 years according to the authors of a study put out last year. The northern reaches of the globe are warming at twice the rate as areas closer to the equator, and those hotter conditions are contributing to more widespread burns.

The Intergovernmental Panel on Climate Change’s landmark climate report released earlier this year indicates that for every 1.8°F rise in temperatures, wildfire activity is expected to double.

We have a team on Greenland ice right now, and until mid August, tasked with measuring the impact of dark particles on ice melt. We are asking for support to increase our abilities to detect smoke landing on Greenland ice. The support will help us afford expanding our laboratory work.

 

Whodunit? Glacier Crime Scene Investigation in the Himalaya

High up in the Himalaya, it lurks. It is hard to spot with the naked eye. Yet we see the damage it leaves in its wake. No, this is not the elusive Himalayan yeti (though I do have camera traps set out). Rather, I am referring to black carbon or soot – resulting from incomplete combustion of fossil fuels, as well as biofuels and biomass – which deposits on snow and ice in the Himalaya. These dark particles absorb sunlight, warming snow and ice, leading to faster glacier mass loss.  These particles are smaller than a strand of hair. Small but mighty, so it seems. Yet, black carbon isn’t the only culprit. Locally and regionally derived dust also can impact snow melt. While dust is a natural occurrence on the planet, recent land use changes, such as road and trail construction can add to the amount. Thus, it is important to consider the combined effect of soot and dust.

As in the Arctic, dark particles on Himalayan snow are a concern as they lead to enhanced heating, melting and sublimation. While melting ice on Greenland can directly contribute to sea level increases, in the Himalaya ice loss affects people on a more local and regional scale – by disrupting water resources, as well as cutting off climbing routes. The Nepalese Himalaya are home to eight of the world’s 8000-meter peaks. As climate continues to change and conditions become more treacherous for climbing, this may affect the local communities who rely on trekkers and mountaineers for income.

From October 2013 – end of May 2014, my team and I collected snow samples across the Khumbu valley in the Everest region (eastern part of Nepal), including Island Peak, Lobuche East, Khumbu glacier, Ngozumpa glacier, Cho La and Renjo La. In central Nepal, we collected samples from Annapurna South and Mt. Himlung in the remote NarPhu valley, on the border with Tibet. Out in the field, the technique is straight-forward: wash your hands (or ice axe) in the snow first, then collect a gallon-size bag of snow from the top few centimeters and the subsurface. The former represents dry deposition from the air while the latter represents deposition in the last snowfall event. You then quickly come back down to camp to melt the samples and run the water through filters, capturing pollutants and other contaminants, which later are analyzed in the lab. The technique I am using was developed by Dr. Carl Schmitt at the National Center for Atmospheric Research, with whom I am collaborating (http://www2.ucar.edu/atmosnews/just-published/8856/measuring-pollutants-andean-glaciers).  He developed this while working with the American Climber Science Program throughout the Cordillera Blanca in Peru (http://climberscience.wordpress.com).

Preliminary results show a dominance in relative mass concentration of dust in samples, with particularly high levels of black carbon/dust in more frequented regions such as the high mountain passes and climbing peak high camps. Whodunit? Well, that’s more complicated, but a few suspects are in custody:

  • dust from eroding trails at the lower altitudes, due to frequent human and animal traffic during the high trekking seasons in the autumn and spring
  • black carbon from wildfires
  • soot from yak dung burning stoves in local villages
  • dust from road construction in Kathmandu
  • black carbon from diesel-belching buses and trucks
  • soot from brick factories, though farther geographically, may be carried to the mountains by the wind.

It is clear we are dealing with anthropogenic changes and that needs to be addressed at the local and national government levels. Understanding the sources better and developing mitigation efforts where possible will be key, as well as understanding the effects on the water supply in the region in order to facilitate adaptation.

Acknowledgments Funding for my work includes: National Science Foundation (NSF); USAID; the US Fulbright Program; Geological Society of America (GSA); the Explorers Club; National Snow and Ice Data Center’s (NSIDC) CHARIS project; Rice Space Institute; and individual sponsors/donors through the University of Colorado Boulder and crowd-funding from Petrishdish.org and Rockethub.com.

Team members: Passang Nuru Sherpa, Kami Sherpa, Ang Tendi Sherpa, Nima Sherpa, Dr. John All, Jake St. Pierre, Chris Cosgriff, David Byrne, Marty Coleman, Michael Coote

 

 

first data makes it off Camp Dark Snow

Phase 1 of our field  program began 18 June with the camp installation and getting into a rhythm with ground and airborne measurements.

2014 07 01 203338

drone view of cook and science tents

A re-supply flight rotated in fresh people and food while Jason and Marek rotated out until their 1 August return for the final weeks of our the 2 month field science campaign.

2014 06 28 132310

from left to right: Nathan Chrismas, Marek Stibal, Karen Cameron, Martyn Law, Alia Khan, Oysten Bornholm (pilot), Jason Box, and Filippo Qaglia

After the usual uphill struggle that is field work, a most welcome feeling of satisfaction came after successful flights with the UAV copter.

launching copter with down looking video calibrated using the white reference target

Jason Box launching UAV copter with down looking video calibrated using the white reference target lower right.

Ice biologists were busy gathering cell counts and I can tell you, the results are telling us we’re not wasting out time out on the ice.

Dr Marek Stibal gathers ice algae samples.

Dr Marek Stibal gathers ice algae samples.

Dr Karen Cameron measures spectral reflectance of ice all around our camp.

Dr Karen Cameron measures spectral reflectance of ice all around our camp.

2015 06 25 183918

Dr. Jason Box measures reflectivity of ice algae and other snow and ice impurities.

We’re still running our crowd funding campaign because we lack

  1. some travel funds
  2. funds to do some of the lab processing
  3. funding for advancing our drone objectives.

We ask you to join us and help our science happen with a US tax deductible pledge.

2014 Greenland ice sheet reflectivity near record low

The NASA MODIS sensor on the Terra satellite provides surface reflectivity data since early 2000 enabling us to evaluate just how dark Greenland ice is today and in comparison with the past 14 years.

The data show that 2014 ice sheet reflectivity (also called albedo) has been near record low much of 2014, especially at the highest elevations.

2500-3200m_Greenland_Ice_Sheet_Reflectivity

15 years of albedo data for the uppermost region of the ice sheet

The darkness of the surface at high elevations is consistent with the findings of Dumont et al. (2014) that an increasing dust concentration on the ice sheet in the pre-melt season from decreasing snow cover on land upwind of the ice sheet may be a significant darkening factor.

If there will be a persistent pattern of warm air brought over the ice sheet as in 2012, we should expect melting at the ice sheet upper elevations. Why? Low reflectivity heats the snow more than normal, removing more of the ‘cold content’. A dark snow cover will thus melt earlier and more intensely. A positive feedback exists for snow in which once melting begins, the surface gets yet darker due to increased liquid water content, increased snow grain size, and possible other factors such as microbial growth.

For the ice sheet as a whole, low reflectivity in 2014 has been exceeded only by years 2012, 2013, and 2011, depending on the time of year…

0-3200m_Greenland_Ice_Sheet_Reflectivity

15 years of albedo data for the entire ice sheet and peripheral glaciers

The Greenland reflectivity anomaly map features red and orange colors that indicate a relatively dark surface near the end of June especially at the low elevations where most melting occurs.

albedo anomaly map

albedo anomaly map. For more, see http://polarportal.dk/en/groenlands-indlandsis/nbsp/isens-overflade/

Work Cited

  1. Dumont, M., E. Brun, G. Picard, M. Michou, Q. Libois, J-R. Petit, M. Geyer, S. Morin and B. Josse, Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009, Nature Geoscience, 8 June, 2014, DOI: 10.1038/NGEO2180