Close

We believe gathering measurements from the surface of Greenland ice is fundamental to advancing our understanding of the melting Arctic.

We inform the global public what's happening in this remote but important place.

The Stars of the Show

For almost two months we endured (and let’s face it, enjoyed) camp life at its fullest; sleeping on the ice every night, falling into countless water filled holes, enduring the discomforts of cold-numbed toes and keeping up with the seemingly endless treadmill of camp maintenance… But at the end of the day, it was these guys, the “Ice Algae”, that were the true stars of the show!

The picture above is an image of what we see when we look down the microscope at our surface ice samples. Dark-coloured ice algae clearly dominate the sample. Typically we estimated that there were tens of thousands of algal cells in every milliliter of sample. When you bulk these samples up to liters and gallons, and then to the volume of surface ice found within biologically active area of the Greenland Ice Sheet (currently estimated at >400,000 km2), we’re looking at some serious cell numbers. As Marek Stibal explained previously, these guys are packed with a dark purple-brown pigment that protects them from sunlight, but also causes the darkening of the ice surface.

So, were we pleased with our field season? Definitely! Once we had figured out the best way to interpret the environment, we set about to amass as much data as we could, so that any conclusions that are drawn are as robust as possible. Overall we took around 600 samples for biological analysis, over 2000 close range spectral readings and, most amazingly, we individually counted around 94,000 algal cells in the field. This, on top of keeping a well-oiled camp going, kept us more than busy over the summer.

Now that we are back from our field work, our next mission is to interpret just how much albedo change is due to the darkening effect of algal growth on the ice surface, and furthermore, how much this darkening is contributing towards ice melt. In addition, we also intend to use laboratory analyses in Copenhagen to look into some of the more intricate components of the surface ice ecology that we have been living alongside all summer.

 

 

atop a heap of useful data

Camp Dark Snow spanned the 2014 Greenland melt season, with 59 days camping, 17 June to 14 August. We had very few logistical snags and our science objectives were met. We had strings of clear sky days, followed by rain, sometimes heavy, to evaluate the time evolution of ice reflectivity.

We managed 26 UAV missions that fill the intermediate scale between our point measurements and that from satellite. Marek delivered a heavy box of ice samples to Copenhagen. On camp for most days, Karen developed a regular 2 day routine that has delivered for example 2,262 spectral reflectance point measurements as part of 29 surveys. The count of microbiological cell counts is staggering.

Coptering over moulins produced some video useful in communicating a video we call “follow the water” I presented at the AGU in 2013 and that will appear soon as a from Peter Sinclair. Several videos are in production to be shared in coming days, weeks, months.

We’re atop a heap of data and we’re busy beginning the next phase of the campaign; digestion.
A 21-23 September mile marker for us will be the International Workshop on “Quantifying Albedo Feedbacks and their Role in the Mass Balance of the Arctic Terrestrial Cryosphere at the University of Bristol, UK. Organisers: Martyn Tranter and Martin SharpThe meeting is supported by the International Arctic Science Committee.

fire, ice, soot, carbon: Dark Snow Project 2014 final field work in Greenland

Arrived yesterday to Kangerlussuaq, west Greenland, now 6 AM, we’re just about out the door in effort to put more numbers on how fire and other factors are affecting Greenland’s reflectivity as part of the Dark Snow Project.

I just received this 27 July, 2014 NASA MODIS satellite image showing wildfire smoke drifting over Greenland ice.

Premier climate video blogger Peter Sinclair is a key component of the Dark Snow Project because of our focus on communicating our science to the global audience. The video below was shot and edited last night quickly as we prepare for a return to our camp a few hours from now.

The video does not comment on the important issue of carbon. So, here’s a quick research wrap-up… Wildfire is a source of carbon dioxide, methane and black carbon to the atmosphere. Jacobson (2014) find that sourcing to be underestimated in earlier work. Graven et al. (2013) find northern forests absorbing and releasing more carbon by respiration due to Arctic warming’s effects on forest composition change. At the global scale, the land environment produces a net sink of carbon, taking up some 10% of the atmospheric carbon emissions due to fossil fuel combustion (IPCC, 2007). Yet, whether northern wildfire is becoming an important source of atmospheric carbon (whether from CO2 or CH4 methane) remains under investigation. University of Wisconsin-Madison researchers find:

“fires shift the carbon balance in multiple ways. Burning organic matter quickly releases large amounts of carbon dioxide. After a fire, loss of the forest canopy can allow more sun to reach and warm the ground, which may speed decomposition and carbon dioxide emission from the soil. If the soil warms enough to melt underlying permafrost, even more stored carbon may be unleashed.

“Historically, scientists believe the boreal forest has acted as a carbon sink, absorbing more atmospheric carbon dioxide than it releases, Gower says. Their model now suggests that, over recent decades, the forest has become a smaller sink and may actually be shifting toward becoming a carbon source.

“The soil is the major source, the plants are the major sink, and how those two interplay over the life of a stand really determines whether the boreal forest is a sink or a source of carbon

Works Cited
  • Danish Meterological Institute provided the NASA MODIS satellite image
  • Graven, H.D., R. F. Keeling, S. C. Piper, P. K. Patra, B. B. Stephens, S. C. Wofsy, L. R. Welp, C. Sweeney, P.P. Tans, J.J. Kelley, B.C. Daube, E.A. Kort, G.W. Santoni, J.D. Bent, 2013, Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960,  Science: Vol. 341 no. 6150 pp. 1085-1089, DOI: 10.1126/science.1239207
  • Climate Change 2007: Working Group I: The Physical Science Basis, IPCC Fourth Assessment Report: Climate Change 2007
  • Jacobson, M. Z., 2014, Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021861.

Canadian fires and the Dark Snow effort

assets-climatecentral-org-images-uploads-news-7_16_14_Brian_NWTFiresAerial-640x480

An aerial view of the Birch Creek Fire complex, which seared 250,000 acres as of Wednesday. Credit: NWTFire/Facebook/ClimateCentral.org

A large number of uncontrolled fires are burning across the Canadian NWT. The prevailing flow brings some of that smoke to darken Greenland ice.

2014_184

Example of one day last week of fires detected from NASA satellite thermal imagery. Analysis by Jason Box as part of the Dark Snow project

via Brian Kahn of Climate Central

“The amount of acres burned in the Northwest Territories is six times greater than the 25-year average to-date according to data from the Canadian Interagency Forest Fire Center.

Boreal forests like those in the Northwest Territories are burning at rates “unprecedented” in the past 10,000 years according to the authors of a study put out last year. The northern reaches of the globe are warming at twice the rate as areas closer to the equator, and those hotter conditions are contributing to more widespread burns.

The Intergovernmental Panel on Climate Change’s landmark climate report released earlier this year indicates that for every 1.8°F rise in temperatures, wildfire activity is expected to double.

We have a team on Greenland ice right now, and until mid August, tasked with measuring the impact of dark particles on ice melt. We are asking for support to increase our abilities to detect smoke landing on Greenland ice. The support will help us afford expanding our laboratory work.

 

Whodunit? Glacier Crime Scene Investigation in the Himalaya

High up in the Himalaya, it lurks. It is hard to spot with the naked eye. Yet we see the damage it leaves in its wake. No, this is not the elusive Himalayan yeti (though I do have camera traps set out). Rather, I am referring to black carbon or soot – resulting from incomplete combustion of fossil fuels, as well as biofuels and biomass – which deposits on snow and ice in the Himalaya. These dark particles absorb sunlight, warming snow and ice, leading to faster glacier mass loss.  These particles are smaller than a strand of hair. Small but mighty, so it seems. Yet, black carbon isn’t the only culprit. Locally and regionally derived dust also can impact snow melt. While dust is a natural occurrence on the planet, recent land use changes, such as road and trail construction can add to the amount. Thus, it is important to consider the combined effect of soot and dust.

As in the Arctic, dark particles on Himalayan snow are a concern as they lead to enhanced heating, melting and sublimation. While melting ice on Greenland can directly contribute to sea level increases, in the Himalaya ice loss affects people on a more local and regional scale – by disrupting water resources, as well as cutting off climbing routes. The Nepalese Himalaya are home to eight of the world’s 8000-meter peaks. As climate continues to change and conditions become more treacherous for climbing, this may affect the local communities who rely on trekkers and mountaineers for income.

From October 2013 – end of May 2014, my team and I collected snow samples across the Khumbu valley in the Everest region (eastern part of Nepal), including Island Peak, Lobuche East, Khumbu glacier, Ngozumpa glacier, Cho La and Renjo La. In central Nepal, we collected samples from Annapurna South and Mt. Himlung in the remote NarPhu valley, on the border with Tibet. Out in the field, the technique is straight-forward: wash your hands (or ice axe) in the snow first, then collect a gallon-size bag of snow from the top few centimeters and the subsurface. The former represents dry deposition from the air while the latter represents deposition in the last snowfall event. You then quickly come back down to camp to melt the samples and run the water through filters, capturing pollutants and other contaminants, which later are analyzed in the lab. The technique I am using was developed by Dr. Carl Schmitt at the National Center for Atmospheric Research, with whom I am collaborating (http://www2.ucar.edu/atmosnews/just-published/8856/measuring-pollutants-andean-glaciers).  He developed this while working with the American Climber Science Program throughout the Cordillera Blanca in Peru (http://climberscience.wordpress.com).

Preliminary results show a dominance in relative mass concentration of dust in samples, with particularly high levels of black carbon/dust in more frequented regions such as the high mountain passes and climbing peak high camps. Whodunit? Well, that’s more complicated, but a few suspects are in custody:

  • dust from eroding trails at the lower altitudes, due to frequent human and animal traffic during the high trekking seasons in the autumn and spring
  • black carbon from wildfires
  • soot from yak dung burning stoves in local villages
  • dust from road construction in Kathmandu
  • black carbon from diesel-belching buses and trucks
  • soot from brick factories, though farther geographically, may be carried to the mountains by the wind.

It is clear we are dealing with anthropogenic changes and that needs to be addressed at the local and national government levels. Understanding the sources better and developing mitigation efforts where possible will be key, as well as understanding the effects on the water supply in the region in order to facilitate adaptation.

Acknowledgments Funding for my work includes: National Science Foundation (NSF); USAID; the US Fulbright Program; Geological Society of America (GSA); the Explorers Club; National Snow and Ice Data Center’s (NSIDC) CHARIS project; Rice Space Institute; and individual sponsors/donors through the University of Colorado Boulder and crowd-funding from Petrishdish.org and Rockethub.com.

Team members: Passang Nuru Sherpa, Kami Sherpa, Ang Tendi Sherpa, Nima Sherpa, Dr. John All, Jake St. Pierre, Chris Cosgriff, David Byrne, Marty Coleman, Michael Coote