Dark Snow Project to sample snow across Greenland using wind & solar energy

In partnership with Adventure-preneur Ramon Larramendi and trace chemist Ross Edwards, the Dark Snow Project is to sample snow across Greenland May 21 – 22 June, 2017.

The key innovation is using wind & solar energy.

We are crowdfunding this activity.We don’t have all our costs covered. But the work is too cool to not do and we’re confident people like you can help us make it happen (click here).

A 3 minute video…

fire, ice, soot, carbon: Dark Snow Project 2014 final field work in Greenland

Arrived yesterday to Kangerlussuaq, west Greenland, now 6 AM, we’re just about out the door in effort to put more numbers on how fire and other factors are affecting Greenland’s reflectivity as part of the Dark Snow Project.

I just received this 27 July, 2014 NASA MODIS satellite image showing wildfire smoke drifting over Greenland ice.

Premier climate video blogger Peter Sinclair is a key component of the Dark Snow Project because of our focus on communicating our science to the global audience. The video below was shot and edited last night quickly as we prepare for a return to our camp a few hours from now.

The video does not comment on the important issue of carbon. So, here’s a quick research wrap-up… Wildfire is a source of carbon dioxide, methane and black carbon to the atmosphere. Jacobson (2014) find that sourcing to be underestimated in earlier work. Graven et al. (2013) find northern forests absorbing and releasing more carbon by respiration due to Arctic warming’s effects on forest composition change. At the global scale, the land environment produces a net sink of carbon, taking up some 10% of the atmospheric carbon emissions due to fossil fuel combustion (IPCC, 2007). Yet, whether northern wildfire is becoming an important source of atmospheric carbon (whether from CO2 or CH4 methane) remains under investigation. University of Wisconsin-Madison researchers find:

“fires shift the carbon balance in multiple ways. Burning organic matter quickly releases large amounts of carbon dioxide. After a fire, loss of the forest canopy can allow more sun to reach and warm the ground, which may speed decomposition and carbon dioxide emission from the soil. If the soil warms enough to melt underlying permafrost, even more stored carbon may be unleashed.

“Historically, scientists believe the boreal forest has acted as a carbon sink, absorbing more atmospheric carbon dioxide than it releases, Gower says. Their model now suggests that, over recent decades, the forest has become a smaller sink and may actually be shifting toward becoming a carbon source.

“The soil is the major source, the plants are the major sink, and how those two interplay over the life of a stand really determines whether the boreal forest is a sink or a source of carbon

Works Cited
  • Danish Meterological Institute provided the NASA MODIS satellite image
  • Graven, H.D., R. F. Keeling, S. C. Piper, P. K. Patra, B. B. Stephens, S. C. Wofsy, L. R. Welp, C. Sweeney, P.P. Tans, J.J. Kelley, B.C. Daube, E.A. Kort, G.W. Santoni, J.D. Bent, 2013, Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960,  Science: Vol. 341 no. 6150 pp. 1085-1089, DOI: 10.1126/science.1239207
  • Climate Change 2007: Working Group I: The Physical Science Basis, IPCC Fourth Assessment Report: Climate Change 2007
  • Jacobson, M. Z., 2014, Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021861.

Canadian fires and the Dark Snow effort


An aerial view of the Birch Creek Fire complex, which seared 250,000 acres as of Wednesday. Credit: NWTFire/Facebook/

A large number of uncontrolled fires are burning across the Canadian NWT. The prevailing flow brings some of that smoke to darken Greenland ice.


Example of one day last week of fires detected from NASA satellite thermal imagery. Analysis by Jason Box as part of the Dark Snow project

via Brian Kahn of Climate Central

“The amount of acres burned in the Northwest Territories is six times greater than the 25-year average to-date according to data from the Canadian Interagency Forest Fire Center.

Boreal forests like those in the Northwest Territories are burning at rates “unprecedented” in the past 10,000 years according to the authors of a study put out last year. The northern reaches of the globe are warming at twice the rate as areas closer to the equator, and those hotter conditions are contributing to more widespread burns.

The Intergovernmental Panel on Climate Change’s landmark climate report released earlier this year indicates that for every 1.8°F rise in temperatures, wildfire activity is expected to double.

We have a team on Greenland ice right now, and until mid August, tasked with measuring the impact of dark particles on ice melt. We are asking for support to increase our abilities to detect smoke landing on Greenland ice. The support will help us afford expanding our laboratory work.


Dark Snow feedback animation from Joe Immen


After seeing graphic artist Joe Immen’s Climate Hawk logo, I approached him to develop the Dark Snow logo. Here are some photos I shot on our first meeting as Joe sketched the first Dark Snow logos…

Joe Immen at work

Joe Immen sketching the first Dark Snow logo back in October, 2012

Screen Shot 2014-05-27 at 5.14.47 PMFrom that discussion came the following logo of several others…

Dark Snow logo fire-Greenland map3

Joe Immen lives in Columbus, Ohio.



No black magic, Dark Snow really matters

A new study, independent of the Dark Snow Project, validates our hypothesis, that black carbon can accelerate Greenland Ice sheet melt.

The study, in Proceedings to the National Academy of Sciences (Keegan et al. 2014) finds that black carbon from wildfires facilitated widespread Greenland ice sheet surface melting in just two years since the end of the 19th century: 1889 and 2012. They argue convincingly that not just warm temperatures, but the positive feedback with black carbon and surface solar heating can push the surface energy balance into net heating and ice melt. Further, the likelihood for future increases in air temperature and wildfire boosts the probability of high altitude former “dry snow area” surface melting by end of century to every few years, if not even more frequently, they conclude.

Dark Snow Project

The Dark Snow Project’s first goal was sampling of the 2012 summer melt layer to answer if and by how much black carbon from wildfire and industrial sources played an important role in the widespread 2012 July surface melting of the Greenland ice sheet.

After a successful crowd funding campaign, on 8 July, 2013 at the southern Greenland ice sheet topographic divide, we extracted several snow/ice cores through the 2012 melt layer as part of ‘lean and mean’ helicopter mission. Frozen samples were then transported to the Snow Optic Laboratory at NASA’s Jet Propulsion Laboratory where McKenzie Skiles, present at the coring, painstakingly measured the black carbon concentrations.

We find black carbon concentrations equivalent with the peak values in Keegan et al. (2104), around 14 parts per billion (equivalent with nano grams per gram). We had 3 samples with concentrations above 12 ppb.


Dark Snow Project black carbon measurements from Greenland’s southern topographic divide.

Our first results, described at the Dec. 2013 AGU meeting implied, as Keegan et al. (2014) confirm, that the cumulative effect of small absolute black carbon concentrations can produce sufficient increases in absorbed sunlight to enable surface melting.

In 2012, after publishing a measurement of the Greenland ice sheet albedo feedback, that did not explicitly include black carbon, as my home state of Colorado underwent record setting wildfires, I realized there was more to the story…

Where there is fire, there is smoke!

Wildfire, increasing with climate change [123], deposits increasing amounts of light-absorbing black carbon [soot] on the cryosphere [snow and ice], multiplying the existing heat-driven ice-reflectivity feedback [a.k.a. albedo feedback].

Sifting through data from NASA’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) revealed smoke clouds near, over, and even in contact with Greenland.

The discovery was reported widely 123456789 .

The science Continues

We’re gearing up for a June-August 2014 intensive field campaign designed to further this science. In addition to continued investigation of black carbon, we are bringing new focus to analyze the darkening effect of microbes.   Glacier and ice sheet biologist Dr. Marek Stibal will be gathering data on the increasingly pronounced effects of microbial and algal growth on the warming ice sheet.

As larger and larger ares of Greenland become subject to summer melt, more liquid water, a key limiting factor for microbial growth, is available on the ice sheet. In addition, Dr. Stibal and Dr. Karen Cameron will be examining whether fertilizing factors, such as nitrous oxide from industrial processes, may be encouraging additional biological activity on the ice sheet.

In a recent Dark Snow posting, Dr. Stibal noted that organisms on the ice produce dark pigments to shield themselves from intense sun, as well as other functions.

it is a sunscreen, a protection against the harmful UV radiation and also excessive visible radiation which can inhibit photosynthesis in the cells. But that’s not all. The pigment may also represent a sink for surplus energy that cannot be invested in cells due to limitations in temperature or nutrient availability, and may even act as a chemical defense against grazers as, for example, phenolic compounds in marine kelp. So, given the nuisances you have to put up with as an alga living on the surface of an ice sheet, it seems like a very useful thing to have.

Recent published science makes ever clearer that sea level rise from melting ice sheets will become a critical impact of climate change sooner than was imagined just a few years ago.  In that light, the continuing research of Dark Snow Project to quantify additional contributing factors has never been more important.

Works Cited

  • Box, J. E., X. Fettweis, J.C. Stroeve, M. Tedesco, D.K. Hall, and K. Steffen. 2012. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821-839. doi:10.5194/tc-6-821-2012
    Doherty, S. J., T. C. Grenfell, S. Forsström, D. L. Hegg, R. E. Brandt, and S. G. Warren. 2013. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow, J. Geophys. Res. Atmos., 118, 5553–5569, doi:10.1002/jgrd.50235.
  • Mack, M. C., M. S. Bret-Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R. Shaver, and D. L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475:489–492. doi:10.1038/nature10283
  • Keegan, K.M., M.R. Albert, J.R. McConnell, and I. Baker. 2014. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet, Proceedings to the National Academy of Sciences, May 19, 2014,